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Abstract

Order picking is the warehousing process by which products are retrieved from their storage locations

in response to customers’ orders. Its efficiency can be influenced through the layout of the area and

the operating policies. We present a model that minimizes travel distances in the picking area

by identifying an appropriate layout structure consisting of one or more blocks of parallel aisles.

The model has been developed for one commonly used routing policy, but it is shown to be fairly

accurate for some other routing policies as well.

1 Introduction

A warehouse typically consists of various areas, including shipping and receiving areas, bulk storage

and order picking areas. A good overview of warehouse operations is given in Gu et al. (2007).

Due to several trends, among which the emergence of e-commerce, there is an increasing emphasis

on the order picking operation, which consists of retrieving individual items from storage on the

∗Corresponding author

1



basis of customers’ orders. This order picking process is often one of the most laborious and costly

activities in a warehouse (Tompkins et al., 2003).

A typical design project for an order picking area starts by identifying the required size of the

area, the appropriate racking (for example, flow racks, pallet racks or shelves) and the equipment

(for example, order picking trucks or picking carts). Next, the layout structure of the area is to

be determined. Finally, operating policies are chosen to control the order picking process concern-

ing, for example, assignment of products to storage locations and sequencing of items on the pick

list. This sequential approach is convenient in practice, but does not necessarily lead to the best

possible solution. In this paper, we present a ‘reverse’ method that can optimize the layout for

the order picking area based on properties of the operating policies. A statistical estimate for the

average travel distance is derived and serves as the objective function in the layout optimization

problem. Compared to existing methods our approach allows more layout variations, specifically

the number of blocks is not limited (see Section 2). Similar results could also be obtained by means

of a massive simulation study. Our analytical model is, however, preferred over simulation when

considering future applicability in practice. This holds mainly because analytical formulas are eas-

ier to incorporate in spreadsheet applications since they are more compact, simpler to implement,

less calculation intensive, and require less memory storage than simulation code. Simulation will

therefore only be used in this paper to validate our analytical model.

In Section 2 we describe the order picking area and the layout optimization problem. Routing

methods will be treated in Section 3. The objective function of the model is derived in Section 4.

The quality of the model is evaluated in Section 5. Some implications for new warehouse designs are

given in Section 6 and Section 7 gives concluding remarks. Finally, a layout optimization example

is presented in the Appendix.
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2 Layout structure

We consider a manual order picking operation, where order pickers walk or drive through a warehouse

to retrieve products from storage. Picked items are placed on a pick device, which the order picker

takes with him on his route. Figure 1 shows various aspects of the layout of an order picking area.

The layout structure is composed of several pick aisles, which have racks on both sides to store

products in. Order pickers can change from one pick aisle to another pick aisle at one of the cross

aisles, which are positioned perpendicular to the pick aisles. Typically, there are at least two cross

aisles, one in the front and one in the back. More cross aisles in between the front and back cross

aisles can be added to increase the number of possibilities to change aisles. Cross aisles do not

contain pick locations. The part of a pick aisle that is between two adjacent cross aisles, is referred

to as a subaisle. All subaisles between two cross aisles taken together are called a block. The main

advantage of having extra cross aisles in a warehouse consists of the increased routing options, which

may result in lower travel distances (Vaughan and Petersen, 1999). On the other hand, warehouse

size must increase if more cross aisles are added, because total storage space must be kept constant

to meet predefined requirements.

XXXXXXXXXXXXXX

Insert figure 1

XXXXXXXXXXXXXX

Several methods exist to control the order picking process, including but not limited to storage

assignment policies and routing policies. Storage assignment policies are used in a warehouse to

determine which product is to be positioned at which location. Numerous rules exist for storage

assignment ranging from random storage to policies that arrange products based on their demand

frequency (Gu et al., 2007). For our model, item locations are assumed to be determined randomly

according to an uniform distribution. Clearly, activity-based item location could possibly ask for

a different layout structure. We will consider only random storage assignment since this strategy
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can be considered as a base-line against which layouts with activity-based storage assignment can

be compared. Furthermore, random storage is a commonly used storage strategy. For example, for

some e-commerce products demand frequency may be too volatile, product life too short, or the

required storage location reorganizations too costly to maintain a storage policy based on demand

frequencies.

Routing policies are used to sequence the items on the pick list to reduce travel times. Several

heuristics and optimal algorithms exist for various situations (Hall, 1993). Order pickers are assumed

to be able to traverse an aisle in either direction and to change direction within an aisle. The path

of the order picker is considered to follow the exact middle of the aisles. Any distance between a

pick location and the middle of the aisle is assumed to be negligible compared to the total travel

distance. In practice, aisle width is typically dictated by equipment requirements and expected risk

of congestion. Therefore, we do not consider the aisle width as a variable in the layout optimization.

See Gue et al. (2006) for issues related to congestion. Every item can be picked from the rack by

the order picker without climbing or using a lifting device, which implies that warehouse height is

not a factor in this research. Picked orders have to be deposited at the depot, where the picker also

receives the instructions for the next route.

Several papers address the problem of designing order picking areas. Petersen (1997) studied

interactions between routing policies and layout for the order picking area by means of simulation.

However, that paper does not provide a general design methodology. Hall (1993) studied the impact

of layout on order picking efficiency through analytical estimates for travel distance in one-block

layouts. Roodbergen and Vis (2006) developed a model that is capable of finding the best layout

structure for the order picking area. Their analysis shows the possibilities and impact of developing

a layout based on characteristics of the operating policies. The results are, however, limited by the

fact that they allow only layouts consisting of one block in their analysis. Caron et al. (2000) and

Le-Duc and De Koster (2005) study warehouses consisting of two blocks with the depot located
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between the two blocks at the head of the middle cross aisle. The model we present in this paper

is capable of selecting the best option from layouts with any number of aisles and any number of

blocks.

For manual order picking, average travel distance is influenced by four major factors: (1) the

length of the pick aisles, (2) the number of pick aisles, (3) the number of blocks, and (4) the number

of picks per route. The basic model presented here optimizes the layout structure for a fixed number

of picks, however, this constraint will be relaxed at a later stage. Actually, the location of the depot

can be considered a fifth factor. We will, however, assume that the depot is always located at the

head of the left-most pick aisle. We make this assumption because the impact of the depot location

on travel distances is usually not very large. Petersen (1997) found that the influence of the depot

location on travel distances is less than 6% and falls below 1% if there are 15 or more picks per route.

The effect of moving the depot from the front cross aisle to the side of the warehouse (as indicated

in Figure 1 by ‘alternative depot location’) is more difficult to predict and therefore investigated

explicitly in Section 5.

We define the following variables:

n number of pick aisles (integer),

k number of blocks (integer),

y length of a pick aisle along the pick face (i.e., the length of a pick aisle excluding the width of

the cross aisles).

We define the following parameters:

S total aisle length, measured along the pick face,

m the number of picks (integer),

wc width of a cross aisle,
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wa center-to-center distance between two adjacent pick aisles.

See Figure 1 for a graphical illustration of y, wa and wc.

Expanding the one-block optimization model of Roodbergen and Vis (2006) for multiple blocks, we

can formulate the problem as follows:

minTm(n, k, y)

s.t. n · y = S

n ≥ 1, k ≥ 1

n, k integer

The minimization of the travel distance Tm(n, k, y) is to be performed under the condition that

total storage space is kept constant. This restriction is modeled as n · y = S. That is, total aisle

length along the pick face is constant. In Section 4 we derive an expression for the average travel

distance Tm(n, k, y) for the case where order pickers travel through the warehouse according to the

S-shape heuristic. The routing heuristic itself is described in the next section. To find the optimum,

we will use complete enumeration over all reasonable values of the model’s variables. From the

experiments presented in this paper, it has appeared this can be done in less than one minute.

Therefore, this is no practical impediment for applying the model.

3 Routing of order pickers

Many methods exist to route an order picker through a warehouse. Ratliff and Rosenthal (1983)

developed an efficient algorithm based on dynamic programming, which can find a shortest route

for warehouses consisting of one block. Hall (1993) describes several heuristics for routing order

pickers in the same layout. Vaughan and Petersen (1999) present a heuristic to route order pickers

in a warehouse with multiple blocks. Their approach assumes that order pickers visit each pick aisle

just once in a fixed sequence from left to right. The cross aisles used to make connections between
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the pick aisles are optimized. Adaptations of the heuristics of Hall (1993) for multiple-block layouts

are presented in Roodbergen and De Koster (2001), along with a new routing heuristic.

The S-shape heuristic is one of the few heuristics from literature that is also widely used in

practice. The adapted version for multiple-block situations, which we use here, was described in

Roodbergen and De Koster (2001). Basically, any subaisle containing at least one pick location is

traversed through the entire length. Subaisles where nothing has to be picked are skipped. In the

following more elaborate description of the heuristic, letters between brackets correspond to the

letters in the example route depicted in Figure 2. In Section 5 we will evaluate to what extent the

layouts determined with the model of Section 2 are sensitive to changes in the routing method.

XXXXXXXXXXXXXX

Insert figure 2

XXXXXXXXXXXXXX

S-shape heuristic

1. Determine the left most pick aisle that contains at least one pick location (called left pick

aisle) and determine the block farthest from the depot that contains at least one pick location

(called farthest block).

2. The route starts by going from the depot to the front of the left pick aisle (a).

3. Traverse the left pick aisle up to the front cross aisle of the farthest block (b).

4. Go to the right through the front cross aisle of the farthest block until a subaisle with a pick

is reached (c). If this is the only subaisle in this block with pick locations then pick all items

and return to the front cross aisle of this block. If there are two or more subaisles with picks

in this block, then entirely traverse the subaisle (d). Continue with step 5.

5. At this point, the order picker is in the back cross aisle of a block, call this block the current
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block. There are two possibilities.

(1) There are picks remaining in the current block (not picked in any previous step). Determine

the distance from the current position to the left-most subaisle and the right-most subaisle of

this block with picks (which have not been retrieved before). Go to the closer of these two

(e). Entirely traverse this subaisle (f). Continue with step 6.

(2) There are no items left in the current block that have to be picked. In this case, continue

in the same pick aisle (i.e., the last pick aisle that was visited in either step 7 or in this step)

to get to the next cross aisle (g) and continue with step 8.

6. If there are items left in the current block that have to be picked, then traverse the cross

aisle towards the next subaisle with a pick location (h) and entirely traverse that subaisle

(j). Repeat this step until there is exactly one subaisle left with pick locations in the current

block. Continue with step 7.

7. Go to the last subaisle with pick locations of the current block (k). Retrieve the items from

the last subaisle and go to the front cross aisle of the current block (m). This step can

actually result in two different ways of traveling through the subaisle (1) entirely traversing

the subaisle or (2) entering and leaving the subaisle from the same side.

8. If the block closest to the depot has not yet been examined, then return to step 5.

9. Finally, return to the depot (n).

4 Average travel distance estimation

Research on the subject of travel distance estimation has mainly been restricted to warehouses

consisting of a single block, see Chew and Tang (1999), Hall (1993), Jarvis and McDowell (1991),

Kunder and Gudehus (1975) and Roodbergen and Vis (2006). Caron et al. (1998) and Le-Duc

and De Koster (2005) studied a two-block layout with turnover-based storage policies and with the
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depot at the head of the middle cross aisle. However, for analytical purposes such a layout is in

many aspects similar to an one-block layout with the depot at the head of the left-most aisle.

In this section we give a statistical estimate for the average travel distances in a warehouse with

any number of blocks when using the S-shape heuristic for routing. We have decomposed the order

picking routes into eleven components based on the described elements of the S-shape heuristic

and derive travel distance estimates for each component. In Figure 3 we graphically illustrate most

of these eleven components with matching numbers. At the end of this section, we present a

formulation for the total average travel distance estimate. First, we define the following:

i is used to indicate the left-most pick aisle that contains a pick location. Note that aisles will

be numbered from right to left. That is, the right-most aisle of the warehouse is aisle 1.

j is used to indicate the block farthest from the depot that contains pick locations. Blocks will

be numbered from front to back.

XXXXXXXXXXXXXX

Insert figure 3

XXXXXXXXXXXXXX

Traveling through subaisles with picks, E(1)

First, we give an estimate for the expected travel distance for all subaisles with at least one pick

that are traversed. With this estimate we assume that a subaisle with pick is traversed entirely.

Estimate E(2) will be used to correct for subaisles that are entered and left from the same side.

The estimate E(1) is based on the expected number of subaisles to be visited and the length of each

subaisle and given by:

E(1) = nk

∙
1−

µ
nk − 1
nk

¶m¸
·
³y
k
+ wc

´
.

The expected number of subaisles that have to be visited, can be formulated as nk
h
1−

¡
nk−1
nk

¢mi
.

In other words, the term between square brackets is 1 minus the probability that a certain subaisle
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does not contain pick locations. A more precise estimate for the number of subaisles to be visited is

possible, however, in Kunder and Gudehus (1975) it is shown that an estimate like this is generally

adequate. The length of a subaisle is equal to the length of a subaisle along the pick face (y/k)

plus two times half the width of a cross aisle (wc). This is because we assume that the order picker

travels exactly through the middle of the aisles and cross aisles.

Correction of travel distance for turns within subaisles, E(2)

Occasionally, aisles are entered and left from the same side. This occurs in any block where the last

subaisle is entered from the front (see step 7 of the routing heuristic). First, we need to estimate

for each block k the one-way distance to the farthest location in the last subaisle, which can be

expressed as part of the length of a subaisle along the pick face ( m/(nk)
m/(nk)+1 ·

y
k ). This is based on the

known statistical property that the maximum of b continuous uniformly distributed [0,1] variables

{Xi} is given by E[max{X1,X2, ...,Xb}] = b/(b + 1), combined with the fact that the expected

number of picks in a subaisle equals m/(nk). Clearly, while making a turn this distance needs to

be traversed twice. The distance related to traversing this aisle without making a turn (y/k) as

incorporated in E(1) needs to be deducted from E(2) to prevent double counts. The estimate E(2)

is formulated as follows:

E(2) =

⎧⎪⎪⎨⎪⎪⎩
2ym
m+nk − y if n odd, and m

nk > 1

0 otherwise,

which follows from the fact that

k

µ
2

m/(nk)

m/(nk) + 1

y

k
− y

k

¶
=

2ym

m+ nk
− y.

Both estimateE(1)andE(2) deal with subaisles containing picks. The routing heuristic sometimes

lets an order picker travel through a subaisle that does not contain picks. Next, we give E(3) to

handle this situation.
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Traveling through subaisles without picks, E(3)

As explained in Section 3, occasionally some subaisles without pick locations may need to be tra-

versed. Namely, the left-most pick aisle i is traversed entirely to reach the farthest block with picks

(see step 3 of the routing heuristic), regardless of the presence of picks in the subaisles that are

passed. An order picker may also traverse empty subaisles on his way from the back to the front

of the warehouse (step 5.2 of the heuristic). This occurs if there are no picks at all in a block. To

include this additional travel we propose the estimate E(3).

E(3) =
³y
k
+ wc

´ nX
i=1

kX
j=1

AijE
(3)
ij

with

Aij =

∙µ
i

n

¶m

−
µ
i− 1
n

¶m¸
·
∙µ

j

k

¶m

−
µ
j − 1
k

¶m¸

E
(3)
ij = (j − 1)

µ
ij − 1
ij

¶m

+ (j − 1)
µ
ij − i+ 1

ij

¶m

.

As explained in steps 1 and 2 of the routing heuristic, both the left-most pick aisle i and the

farthest block j need to be determined. The probability that j is the farthest block can be expressed

as the probability that all picks fall into blocks 1 through j with at least one pick in block j, namelyh³
j
k

´m
−
³
j−1
k

´mi
. Similarly, the probability that i is the left-most pick aisle can be seen to equal£¡

i
n

¢m − ¡ i−1n ¢m¤ . We obtain Aij by combining both probabilities.

The component E(3)ij consists of the number of blocks that must be traversed (j− 1), multiplied

by the probability that this happens without picking. The probability of traversing a block without

picking from front to back equals ((ij − 1)/ij)m. This holds because the probability that one

pre-specified pick will not be in one pre-specified subaisle out of the available ij subaisles equals

(ij − 1)/ij. Similarly, subaisles 1, ..., i − 1 must all be empty if a block is traversed from back to

front without picks, which has a probability of (ij − i+ 1)/ij.

We take the summation over all possible values of i and j, the appropriate probability Aij and
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the expected travel distance for each combination of i and j, which is the product of (y/k + wc)

and E(3)ij , to obtain an estimate of travel distances in subaisles without picks. We have now covered

travel distances within the aisles by means of estimates E(1), E(2), and E(3). Next, we need to add

distances traveled in the cross aisles.

Traveling from the depot to the first pick aisle, E(4)

The first distance an order picker travels in one of the cross aisles, is when he goes from the depot (in

aisle n) to the left-most aisle with picks (aisle i). Similar to Aij we need to calculate the probability

that aisle i is the left-most pick aisle. For all possible values of i we take the number of aisles that

need to be passed before we reach aisle i while starting in n (which equals n− i) and multiply it by

the width of an aisle (wa) to obtain the corresponding travel distances. Summarizing, E(4) can be

calculated as follows:

E(4) = wa

nX
i=1

µ
(n− i) ·

∙µ
i

n

¶m

−
µ
i− 1
n

¶m¸¶
.

Besides E(4), the distances traveled in cross aisles can be divided into the following components:

distances traveled in cross aisles of the farthest block that contains picks E(5), distances traveled

in the other blocks to connect subaisles that contain picks E(6) and distances traveled to go from

one block to the next E(7). The remaining travel distances in cross aisles consist of returning to the

depot after the last pick, which will be treated later on.

Traveling in the cross aisles of the farthest block, E(5)

After arriving at the front cross aisle of the farthest block that contains picks (block j), the order

picker travels through this block’s front cross aisle until a subaisle with picks is reached (see step

4 of the routing heuristic). Thereafter, all subaisles with picks are handled until the order picker

ends at the right-most subaisle with picks. Let g be the right-most subaisle with picks (with g = 1

indicating the right-most subaisle) in block j, then the distance traveled in the cross aisles of block
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j equals (i−g)wa. This information can be used to estimate the distance traveled in the cross aisles

of block j as follows:

E(5) = wa

nX
i=2

kX
j=1

AijE
(5)
ij ,

where

E
(5)
ij =

i−1X
g=1

(
(i− g)

mX
u=1

B

µ
u,m,

i− 1
ij

¶ ∙µ
i− g

i− 1

¶u

−
µ
i− g − 1
i− 1

¶u¸)
,

with the binomial distribution B given by:

B (u,m, p) =

µ
m

u

¶
(p)u (1− p)m−u .

The probability that g is the right-most subaisle with picks in block j given that i is the left-

most pick aisle is given by the term between square brackets. The binomial distribution gives the

probability that there are exactly u picks in subaisles 1, ..., i− 1.

Traveling in the cross aisles while picking, E(6)

Next we consider the estimate for the distance traveled in cross aisles of blocks other than block j

while picking items. That is, we estimate the cross aisle travel resulting from steps 6 and 7 of the

routing heuristic as follows:

E(6) = wa

nX
i=3

kX
j=1

AijE
(6)
ij

where

E
(6)
ij = (j − 1)

m−1X
u=1

(
B

µ
u,m,

i− 1
ij

¶
·
i−1X
c=1

[c · (i− 1− c) ·Q(c)]
)
,

where the probability that all picks fall in c+ 1 consecutive subaisles is given by:

Q(c) =

µ
c+ 1

i− 1

¶u

− 2
µ

c

i− 1

¶u

+

µ
c− 1
i− 1

¶u

.

Q(c) gives the probability that all items of this area fall in subaisles c1, ..., c2, at least one pick

falls in c1, at least one pick falls in c2 and c2 − c1 = c. There are (i− 1− c) different combinations

of c+ 1 consecutive subaisles possible from a set of i− 1 subaisles. The distance traveled is wa · c.
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Furthermore, we take the sum over all possible values for the number of picks (u) in this area and

multiply by the corresponding probabilities. We consider all blocks except for the farthest block j,

which has been dealt with in E(5). As a result, we multiply by (j − 1).

Traveling in the cross aisles to connect blocks, E(7)

We need a factor to account for the expected travel from the last visited subaisle of the previous

block to the first subaisle to be visited in the next block as described in step 5.1 of the heuristic.

We have E(6)ij as an estimate for the distance between the left and right-most subaisle in a block.

The distance between the subaisles 1 and i − 1 is equal to i − 2. Therefore, the end point of the

previous block can vary over a distance of wa(i− 2)− E
(6)
ij . The start point of the next block and

end point of the previous block are uniformly distributed over this distance. Treating aisle locations

as continuous random variables, an approximation for the expected distance between the location

of the two points is 13 ·
³
(i− 2) · wa −E

(6)
ij

´
. This distance only needs to be traveled if there is at

least one pick in the next block. Otherwise, the order picker just traverses the nearest subaisle to

go straight to the next block. We do this for the (j − 1) connections between the j blocks that are

visited. Therefore, E(7) is given by:

E(7) =
nX
i=2

kX
j=1

AijE
(7)
ij

with

E
(7)
ij = (j − 1) · 1

3
·
³
(i− 2) · wa −E

(6)
ij

´
·
µ
1−

µ
ij − i+ 1

ij

¶m¶
.

With estimates E(4) − E(7) we have covered all travel distances in cross aisles, except for the

distance to return to the depot after the last pick. This distance depends on the total number of

blocks with pick locations and estimates for this are given in the next two subsections.
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Traveling back to the depot if the number of visited blocks is even, E(8)

Consider the sequence in which subaisles of a block will be visited. The route starts by going to

the farthest block j and the subaisles in this block will be visited from left to right (see Figure 3).

Then in the next block with picks, subaisles can be visited from right to left. In the third block

with picks, subaisles are visited left to right, and so on. If the number of visited blocks is even, then

it is most likely that the order picker finishes picking at the left of the front cross aisle. Note that

we consider the number of visited blocks, not the total number of blocks in the layout. The travel

distance in the front cross aisle of the warehouse, if an even number of blocks has been visited, is

given by:

E(8) = wa ·
nX
i=1

kX
j=2

pjAijE
(8)
ij ,

with

E
(8)
ij =

i−1X
g=1

m−1X
u=1

µ
B

µ
u,m,

i− 1
ij

¶
· (n− g) ·

∙µ
g

i− 1

¶u

−
µ
g − 1
i− 1

¶u¸¶
,

where B
³
u,m, i−1ij

´
gives the probability that there are exactly u picks in block 1; the probability

that the left-most subaisle visited in block 1 equals subaisle g is given by
h³

g
i−1

´u
−
³
g−1
i−1

´ui
; and

wa(n− g) is the distance from subaisle g to the depot.

The probability that the number of blocks to be visited is even, is given by:

pj =
X
h∈H

µ
j

h

¶µ
h

j

¶m

·

⎡⎣1− h−1X
γ=1

(−1)γ+1
µ

h

h− γ

¶µ
h− γ

h

¶m
⎤⎦

with H = {h | 1 ≤ h ≤ k, h ≤ m and h is even}.

This is based on the inclusion-exclusion rule. To briefly explain this, consider the following. Suppose

the farthest block is block j. The probability that all items are in at most h of j blocks equals (h/j)m

multiplied by the number of possibilities to select h blocks from j blocks,
¡j
h

¢
. Next we need to find

the probability of all picks being in exactly h of j blocks. To obtain this, we start with a (conditional)

probability of 1 and subtract the probability that all picks are in h−1 blocks, given that they are in
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at most h blocks:
¡

h
h−1
¢ ¡

h−1
h

¢m
. But now we subtracted the probability that all picks are in h− 2

blocks too often, so we need to add
¡ h
h−2
¢ ¡

h−2
h

¢m
to compensate. And so on.

Traveling back to the depot if the number of visited blocks is odd, E(9)

If the number of visited blocks is odd, the order picker most likely ends his route at the right-most

subaisle of the block closest to the depot. Similar to E(8), we can formulate this as:

E(9) = wa ·
nX
i=1

kX
j=2

(1− pj)AijE
(9)
ij ,

with

E
(9)
ij =

i−1X
g=1

m−1X
u=1

µ
B

µ
u,m,

i− 1
ij

¶
· (n− g) ·

∙µ
i− g

i− 1

¶u

−
µ
i− g − 1
i− 1

¶u¸¶
.

Both E(8)and E(9) do not include the distance that has to be traveled through the front cross

aisle if the block closest to the depot has no picks. Therefore, we derive estimate E(10).

Traveling back to the depot if there are no picks in block 1, E(10)

With estimate E(10) we estimate the distance traveled in the front cross aisle if the last pick of the

route has been collected before reaching block 1. In this case, we assume that the order picker has

to travel half the length of the front cross aisle to return to the depot. As a result, E(10) can be

estimated as:

E(10) = wa

nX
i=1

kX
j=1

Aij

µ
n− i

2

¶µ
ij − i+ 1

ij

¶m

.

Traveling back to the depot if all picks are in one block, E(11)

Finally, we need to determine the distance the order picker travels if all picks are in the block closest

to the depot. That is , if j = 1. Similar to the previous estimates, this estimate is given by:

E(11) = wa

nX
i=1

nX
g=1

µ
Ai1 · (g − 1) ·

∙³ g
n

´m
−
µ
g − 1
n

¶m¸¶
.
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Estimate for total average travel distance

The total estimate for average travel distances in a warehouse with n pick aisles, k blocks, and m

picks can now be formulated as:

Tm(n, k, y) =
11X
i=1

E(i) (1)

Note that equation 1 has been constructed to be as generally applicable as possible. This may

make the equation overly complex for some special cases. For example, for m = 1 we could simply

estimate travel distances by T1(n, k, y) = y + kwc + (n− 1)wa and for k = 1 we could simplify our

formulations to Tm(n, 1, y) = E(1) +E(2) + 2(E(4) +E(5)).

Furthermore, equation 1 is formulated for a fixed value of the number of picks m. Similar to

Roodbergen and Vis (2006) we can easily adapt the estimates for a variable pick list size. Assuming

that we know for every pick list size m that it will occur with probability pm the average travel

distance can be estimated as T (n, k, y) =
P∞

m=1 pm · Tm(n, k, y). Finally, it might sometimes be

interesting to study travel times instead of travel distances. The required translation can be made

by dividing travel distances by the appropriate travel speed.

5 Estimate quality and robustness

In this section, we compare the travel distance estimate Tm(n, k, y) from Section 4 with simulation.

Furthermore, we test the quality of the solutions of the layout model of Section 2. We also investigate

the quality of the layouts generated by the layout model if another routing policy is used for the

actual operation of the warehouse than the S-shape policy we used to develop the distance estimate.

Finally, we examine the quality of the solutions if another depot location is used.

We use a set of test instances, whose range covers the majority of practical warehouse layout

optimization problems. We consider a manual picking operation, which may be in shelf racks,

flow racks, pallet racks or any other type of racking. The main distinguishing factors between the

various types of racking are the center-to-center distance between aisles (wa) and the cross aisle
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width (wc). Since these two factors are typically of the same order of magnitude, we will assume for

all our experiments that they are identical (wa = wc). Other important parameters for the layout

optimization, as noted in Section 2, are the desired total aisle length S and the number of picks

per route m. For each of the three factors wa, S, and m we take the typical ranges as they occur in

practice and select a set of evenly spaced points within the range. This gives us the following set of

parameters for our test instances:

• wa = 2, 3, 4, 5, 6 meters;

• S = 100, 200, 300, ..., 800 meters;

• m = 3, 6, 9, 12, ..., 24 picks.

This amounts to 5 ·8 ·8 = 320 layout problems. For each of these 320 problems we determine the

average travel distance with equation 1 of Section 4 and through simulation for 490 combinations

of n and k. This means that there are 320 · 490 = 156, 800 instances to evaluate in total. For

the simulation of each instance we run 2000 replications. Specifically, for each layout problem we

investigate the following layouts:

• the number of aisles (n) equals 2, 3, 4, ..., 50;

• the number of blocks (k) equals 1, 2, 3, ..., 10.

Comparison of the travel distance estimate with simulation

Differences between the statistical estimate and simulation are calculated for all instances. Table 1

presents the results per value of the number of picks, because it has appeared from other research

(Roodbergen and Vis, 2006), that estimate quality is more sensitive to changes in this parameter

than to changes in the other parameters. Each row in the table contains the aggregate results of all

evaluated instances for a given value of m. For example, the row for m = 15 shows the maximum

18



error encountered among 19,600 instances (all combinations of 5 values for wa, 8 values for S, 49

values for n, and 10 values for k) and the average absolute estimation error over the same set of

instances. The travel distances from the statistical estimate and from simulation are fairly close,

as is apparent from Table 1. The average absolute difference with simulation is 2.14% and the

maximum absolute difference encountered among all instances was 7.96%. There is no systematic

bias that would allow for easy further improvement of the estimate. Of all evaluated instances the

formula overestimated travel time in 55% of the cases when compared to simulated values, and

underestimated travel time in 45% of the cases.

XXXXXXXXXXXXXX

Insert table 1

XXXXXXXXXXXXXX

Comparison of layout optimizations with simulation

To assess the performance of our optimization model of Section 2, we perform a layout optimization

for each of the 320 layout problems in two ways. First, we determine the optimal layout according to

the layout model of Section 2. Secondly, we determine the optimal layout through simulation. For

the optimization through simulation we simply simulate all combinations of n and k and choose the

one with the smallest average travel distance. We will refer to the two layouts as the "model’s opti-

mal layout" and the "simulated optimal layout" respectively. Next, for both layouts we determine

the average travel distance through simulation. Note that we also determine the average travel dis-

tance for the model’s optimal layout by means of simulation (instead of using the estimate’s value).

We do this to prevent a bias in our results. If we would determine the average travel distance for the

model’s optimal layout with the statistical estimate and for the simulated optimal layout through

simulation, then differences between the two results could be caused by either a difference in the

layout or by a difference in the travel distance estimate (we then could find differences even though

the two layouts are identical). By determining average travel distances for both layouts through
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simulation we guarantee that if both approaches return the same layout, we will also find the same

travel distance (the two results are simulated with the same random seed). Then we calculate the

percentage difference between the travel distances resulting from the two layouts, which gives us an

indicator for the quality of the layout optimization.

The results of the layout optimization comparisons are presented in column ‘S-shape’ of Table

2. The maximum error we encountered was 2.9%. The average quality of the model is good with a

deviation of only 0.3%. An interesting point to note is that the quality of the layout optimization

is actually better than the quality of the individual travel distance estimates, which we presented

in Table 1. This is caused by the fact that there are several layouts that have a performance close

to the optimal layout. For an illustration, see the example in the Appendix. Thus, the efficiency

loss from selecting the wrong layout is fairly small, as long as the selected layout does not differ

too much from the optimal layout. In 48% of the 320 instances we evaluated, the two optimization

methods returned exactly the same layout and in 95% of the instances the difference between the

two approaches was just one aisle and/or one block.

XXXXXXXXXXXXXX

Insert table 2

XXXXXXXXXXXXXX

Quality assessment for other routing methods

In practice, the layout decision (a tactical decision) is often made before the decision concerning

the routing policy (an operational decision) is made. Therefore it may be the case that a layout

is chosen with our model, which is based on the assumption of the S-shape routing policy, but the

actual operation will be using another routing method. To test the consequences of such action, we

include results on two other routing policies in Table 2.

A commonly used routing method is largest gap, which basically follows the perimeter of the

blocks. Each subaisle of a block can be entered from one side or from both sides. Any subaisle is
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entered and left from the same cross aisle, except if a full traversal of a subaisle is needed to make

a connection to the next block. Aisles are thus (1) entered and left from the back cross aisle, (2)

entered and left from the front cross aisle, or (3) both. The shortest of the three options is chosen.

A routing method with a known good performance is the combined policy. With this policy,

subaisles are visited in exactly the same sequence as with the S-shape policy. The combined policy,

however, is capable of deciding to traverse a subaisle or to leave a subaisle from the same side it

was entered. The decision to traverse or return in subaisles is optimized through dynamic program-

ming. For detailed descriptions of both routing policies and a figure with example routes, refer to

Roodbergen and De Koster (2001).

We follow similar steps as we did before to generate the S-shape column of Table 2. We optimize

the 320 layout problems by means of the model, which is based on the S-shape routing policy. Then

we optimize the layout by means of simulation using the largest gap (combined) routing policy.

Finally, we compare the average travel distance in the model’s optimal layout to the average travel

distance in the simulated optimal layout, when using the largest gap (combined) routing policy in

both layouts.

As can be seen from Table 2, the layout model also has a fairly good performance for the other

two routing methods. On average the performance of the model’s optimal layouts differs only by

0.9% from the simulated optimal layouts for largest gap and 2.4% for combined. Interestingly, this

is in contrast with the findings in Roodbergen and Vis (2006), where large differences were found

between optimizations with S-shape and largest gap for one-block layouts. Apparently, the added

layout possibilities of having more than one block seem to stabilize the resulting layouts between

the routing methods.

Quality assessment for another depot location

The formulas presented in this paper are based on the assumption that the depot is located in the

front cross aisle. However, the depot may also be located at the head of a cross aisle (Caron et al.,
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1998). This configuration is indicated in Figure 1 by "alternative depot location". We use the model

without alterations for this test; the simulation explicitly uses the alternative depot location. The

impact appears to be minor. The average difference in travel distances is 0.38% and the maximum

difference is 4.1%. Therefore, it can be concluded that the model is equally applicable to warehouses

with another depot location.

6 Layout experiments

In this section, we investigate solutions of the layout optimization model to shed some light on

how the variables n (number of aisles) and k (number of cross aisles) react to variations in the

parameters S (total aisle length), m (number of picks), and wa (width of the aisles). As before we

assume wc = wa throughout all experiments. Very little is known from literature on these relations.

Only Roodbergen and De Koster (2001) and Vaughan and Petersen (1999) study similar layouts.

Both papers, however, essentially evaluate the effect of increasing the number of blocks for pre-

defined values of the number of aisles. Here we allow simultaneous changes in both the number of

aisles and the number of blocks.

We present the optimal layouts for several layout problems in Figure 4. These are the same

layout problems as described in Section 5, but for ease of presentation instances with wa = 3 and

wa = 5 have been omitted. The omitted instances, however, have been considered for the results as

presented in Table 3. Figure 4 is organized as follows. For each value of wa (wa = 2, 4, 6) two 8×8

squares are given, positioned next to each other. The first square contains the optimal number of

aisles (n), and the second square contains the optimal number of blocks (k). Each square consists

of 64 cells (8 rows by 8 columns). Each cell contains the optimal value for a specific combination of

m and S as indicated on the top (S) and at the left (m) of the squares.

XXXXXXXXXXXXXX

Insert Figure 4
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Insert Table 3

XXXXXXXXXXXXXX

Layout optimization essentially means finding the best balance between cross-aisle travel and

within-aisle travel such that the total travel distance is minimized. If the aisles are very long, the

insertion of an additional cross aisle will significantly reduce within-aisle travel and only slightly

increase cross-aisle travel, which makes it a good choice. If the subaisles are fairly short, an extra

cross aisle will still reduce within-aisle travel, but this gain will be smaller than the loss due to

increased travel in the cross aisles. This trade-off was also noted as the main issue by Vaughan and

Petersen (1999). The results from our experiments are consistent with these insights.

Based on our results, we can identify a number of probable relations between parameters wa,

m, S and variables n, k. These relations are presented schematically in Table 3. As can be seen

from Table 3, larger areas (high S) require more subaisles, which can be achieved by increasing the

number of aisles and/or the number of blocks. If the distance between aisles (wa) increases, then

the cost of increasing the number of subaisles increases, which implies that fewer subaisles will be

included in the optimal configuration.

From the 320 design problems we studied, only 56 of the optimal solutions consisted of just one

block. Moreover, these 56 layouts all had 2 aisles in the optimum. These n = 2 / k = 1 solutions

mainly appear when pick density is high and cross aisles are wide (i.e., aisle changing is costly). The

remaining 264 optimal solutions all have multiple blocks. Thus, it seems that — apart from special

cases in which the n = 2 / k = 1 is best — it is always better to have a multiple-block layout than a

one-block layout.

7 Concluding remarks

In this paper, we developed a model that can be used to determine a layout structure for order

picking areas in warehouses. Previous research restricted layouts to situations with only one block,
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essentially reducing the optimization problem to finding the best number of aisles. Also situations

with two blocks were studied before, but the depot location was chosen in these studies such that

the analysis could not be easily extended to more blocks. The optimization model presented in this

paper is capable of considering layouts with any number of blocks and any number of aisles.

The objective function in the layout optimization model is formed by a statistical estimate

for average travel distances in a warehouse with random storage and S-shape routing. Experiments

show that the layouts generated by the model are generally similar to the layouts generated through

simulation. Furthermore, travel distances in layouts optimized with our model are shown to differ

on average by 0.3% and at most by 2.9% from travel distances in layouts obtained by simulation.

Additional testing indicated that the layouts generated by the model are also fairly adequate if the

actual operation of the warehouse will be using another routing method than the S-shape policy.

Finally, the model was used to investigate the behavior of the optimal layout in response to changes

in various parameters. Some probable relations have been identified between input parameters and

optimal layout configurations.
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picks (m) maximum error (%) average error (%) 
3 7.6 2.9 
6 8.0 3.7 
9 7.5 2.6 
12 4.8 2.0 
15 5.5 1.5 
18 5.8 1.4 
21 5.5 1.5 
24 5.6 1.6 

 
TABLE 1. Average and maximum of absolute deviations of the travel distance estimates 
from simulated values. 
 
 
 
 
  S-shape Largest Gap Combined
average error (%) 0.3 0.9 2.4 

maximum error (%) 2.9 3.7 6.4 
 
TABLE 2. Percentage difference between travel time in a layout determined with the 
model and a layout determined with routing-specific simulation for a test set of 320 
layout problems. 
 
 
 
 
  n k 
wa ↓ ↓ 
S ↑ ↑ 
m ↓ ↑↓ 

 
TABLE 3. Effect on the layout variables n and k of an upward change in one of the 
parameters wa, S or m. An upwards arrow means that the optimal value of the layout 
variable will increase (or at least remain equal) if the corresponding parameter increases. 
If both an upward and a downward arrow are given in a cell, then the variable may either 
increase, decrease or remain equal. Results are based on a set of 320 representative layout 
problems. 
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FIGURE 1. Schematic top view of a typical order picking area in a warehouse. 
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FIGURE 2. Example route as generated by the S-shape routing method. Numbers 
indicate the travel sequence. Letters in this figure correspond to the letters that are given 
in brackets in the description of the routing method in Section 3. 
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FIGURE 3. The same example route as in Figure 2. Numbers in this figure correspond to 
the numbers of the various components of the statistical estimate as described in Section 
4. 
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m\S 100 200 300 400 500 600 700 800 m\S 100 200 300 400 500 600 700 800

3 7 10 12 14 16 17 18 20 3 3 3 3 3 3 4 4 4

6 6 9 11 13 15 16 17 18 6 4 4 5 5 5 5 6 6

9 6 9 10 12 13 14 16 17 9 4 5 6 6 7 7 7 7

12 6 8 9 11 12 13 15 15 12 4 6 7 7 8 8 8 9

15 5 7 9 10 11 13 13 14 15 4 6 8 8 9 9 10 10

18 2 7 8 10 11 12 13 13 18 1 6 9 9 9 10 10 11

21 2 6 8 9 10 11 12 13 21 1 8 8 10 11 11 12 12

24 2 6 7 9 10 10 11 12 24 1 8 10 10 11 13 13 13

m\S 100 200 300 400 500 600 700 800 m\S 100 200 300 400 500 600 700 800

3 5 7 9 10 11 12 13 14 3 2 3 3 3 3 3 3 3

6 4 6 8 9 10 11 12 13 6 3 4 4 4 5 5 5 5

9 2 6 7 9 9 10 11 12 9 1 4 5 5 6 6 6 6

12 2 6 6 8 9 9 10 11 12 1 4 6 6 6 7 7 7

15 2 5 6 7 8 9 10 10 15 1 4 6 6 7 8 8 8

18 2 2 6 7 7 8 9 10 18 1 1 6 6 8 9 9 9

21 2 2 5 6 7 8 8 9 21 1 1 6 8 8 8 10 10

24 2 2 2 6 7 7 8 9 24 1 1 1 8 8 10 10 10

m\S 100 200 300 400 500 600 700 800 m\S 100 200 300 400 500 600 700 800

3 4 6 7 8 9 10 11 12 3 2 3 3 3 3 3 3 3

6 3 5 6 7 8 9 10 11 6 2 3 4 4 4 4 5 5

9 2 4 6 7 8 9 9 10 9 1 4 4 4 5 5 5 6

12 2 2 6 7 7 8 8 9 12 1 1 4 4 6 6 7 7

15 2 2 5 6 7 7 8 8 15 1 1 4 6 6 6 6 8

18 2 2 2 5 6 7 7 8 18 1 1 1 6 6 6 8 8

21 2 2 2 2 6 6 7 8 21 1 1 1 1 6 8 8 8

24 2 2 2 2 5 6 7 7 24 1 1 1 1 8 8 8 10

optimal number of aisles (w a  = 6) optimal number of blocks (w a  = 6)

optimal number of aisles (w a  = 2) optimal number of blocks (w a  = 2)

optimal number of aisles (w a  = 4) optimal number of blocks (w a  = 4)

 
FIGURE 4. Overview of the optimal number of aisles (n), and the optimal number of 
blocks (k) for a series of layout problems. The row of a square indicates the number of 
picks (m), the column of a square indicates the total aisle length (S). 



Appendix: Example of a layout optimization

We consider a layout problem with wa = 4, wc = 4, S = 300 and m = 9. We calculate the

average travel distance for all values of n = 2, ..., 50 and k = 1, ..., 10 with equation (1). Aisle

length is determined as y = S/n. Figure A.1 shows 10 curves; one for each value of the number

of blocks (k). Each curve gives the estimated average travel distance as a function of the number

of aisles (n). Especially, the curve for k = 1 has a significantly different shape than the other

curves. This can be explained as follows. The curve starts at a layout with two aisles (n = 2), in

which almost all routes will go up aisle 1 and down aisle 2. The second point on the k = 1 curve

consists of a layout with three aisles (n = 3). Since we have an expected value of three picks

per aisle (m/n = 3), there is a large probability of visiting all three aisles and thus of having

to make a turn in the third aisle. The expected length of a turn is equal to the length of an

aisle only if there is one pick in the aisle. With an expected number of three picks per aisle, we

can expect to travel 1.5 times the aisle length in the third aisle (see estimate E(2)). This extra

distance in the third aisle explains the peak at n = 3. The next point on the curve is n = 4

which will mainly have routes without turns. Then the next point, n = 5, again has a significant

probability of having turns in the last aisle. For n = 5, however, the actual extra travel will be

lower since the expected number of picks per aisle is just 1.8, which causes a smaller peak.

XXXXXXXXXXXXXX

Insert Figure A.1

XXXXXXXXXXXXXX

The best layout for this example is at n = 7, k = 5. Looking at the curves in Figure

A.1, we can see that there are many curves with similar travel distances around the minimum.

Furthermore, all curves appear relatively flat around the optimum. To investigate this, we

created Figure A.2. The horizontal axis of this figure gives the number of blocks and the

1



vertical axis gives the number of aisles. Thus, the position of a dot in the figure represents a

specific layout. The optimal layout has been marked with a circle. All layouts that have an

average travel distance that differs at most 1% from the optimal layout are indicated with a

white square. All layouts differing more than 1%, but no more than 3% are indicated with

a grey square. Finally, black squares indicate layouts that have travel distances which differ

between 3% and 5% from the travel distances in the optimal layout. The figure clearly shows

that there are many layouts with a performance that differs only a few percent from the optimal

layout. Furthermore, other good layouts seem to be similar to the optimal layout, with only

one or a few aisles or blocks more or less. One interesting point in Figure A.2 is the fact that

no dots occur for layouts with 3 blocks. This can be explained as follows. A typical route in

a three-block layout visits the aisles in the block farthest from the depot from left to right. In

the next block, aisles are typically visited from right to left. Finally, in the block closest to the

depot, aisle are visited left to right. This means that routes tend to be on the right of the front

cross aisle after picking the last item, while the depot is at the left. Thus the order picker must

traverse a large part of the front cross aisle without picking in layouts with three blocks. This

makes the three-block layout likely to be less efficient than a layout with 2 or 4 blocks.

XXXXXXXXXXXXXX

Insert Figure A.2

XXXXXXXXXXXXXX
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Figure A.1. Average travel time as a function of the number of aisles for a layout 
optimization problem with wa = 4, S = 300, m = 9. Each curve corresponds to a situation 
with a given number of blocks (as indicated next to the curves). 
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Figure A.2. The optimal layout (indicated with a circle) and several other layouts for a 
layout optimization problem with wa = 4, S = 300, m = 9. White squares indicate layouts 
that differ at most 1% from the optimal layout. Layouts indicated with grey squares differ 
at most 3% from the optimum, and layouts indicated with black squares differ up to 5% 
from the optimum. 


